
Paper PO17

Oracle's RANK() Smells Good
Using RANK() in Pass-through Queries

Richard A. DeVenezia, Independent Consultant

Introduction
Proc SQL in SAS® software is a powerful tool. For many 
years SAS users have enjoyed an automatic self join that 
occurs when an groupwise aggregate function is used in a 
having clause.

Simple SAS Example

The select statement is not valid SQL when passed 
through to Oracle.

1

data MyResults;
input Group_Id SeqN Measure;
cards;
1 1 13 
1 2 4 
1 3 16 
1 4 11 
2 1 11 
2 2 56 
2 3 55 
run;

proc sql;
  create table MyQuery as
  select group_id,seqn,measure
  from MyResults
  group by group_id
  having measure = min(measure)
;



Robust Example
A company is developing a new material.  The 
composition is based on a recipe.  Material samples are 
obtained and sent to various laboratories to be 
destructively tested according to a standard procedure.  

In Oracle four inter-related tables were designed to 
capture the situation.

Table 1. Recipes
ID
NAME
...more...

Table 2. Samples
ID
RECIPE_ID
...more...

Table 3. Results
ID
SAMPLE_ID
LAB_ID
DATE
...more...

Table 4. Labs
ID
NAME
...more...

2



The boss wants to know "For recipe X, what were the first  
day results and where were they generated?"

Proc SQL

The query in SAS SQL is 
relatively simple.

Again, the syntax is invalid in 
Oracle.

Let's detail the situation more generically using table 
names A, B, C, D.

3

proc sql;
  create table first_X_tests as
  select 
        RECIPES.NAME as RECIPE_NAME
      , RESULTS.*
      , LABS.NAME as LAB_NAME
   from
        RECIPE
      , SAMPLES as B
      , RESULTS as C
      , LABS as D
   where
        RECIPES.NAME = 'X'
    and SAMPLES.RECIPE_ID = RECIPES.ID
    and RESULTS.SAMPLE_ID = SAMPLES.ID
    and RESULTS.LAB_ID = LABS.ID
  group by RECIPES.ID, LABS.ID
  having 
     C.DATE = MIN(C.DATE)
;



Table A
Maintains a list of unique names and their corresponding 
ids.
create table a
( ID number not null
, NAME char(2) 
, constraint a_pk primary key (id)
, constraint name_unique unique (name)
);
insert into a values(1,'A1');
insert into a values(2,'A2');

Table B
Acts as an organizer; it lets the rows of C determine which 
A they belong to.
create table b
( ID number not null
, A_ID number
, constraint b_pk primary key (id)
, constraint fk_ba foreign key (a_id) references a
);
insert into b values(11, 1);
insert into b values(12, 2);
insert into b values(13, 1);
insert into b values(14, 1);
insert into b values(15, 1);

4



Table C
Records transactions. For demonstration sake the sample 
table has a number DATEX. 
create table c
( ID number not null
, B_ID number
, D_ID number
, DATEX number
, constraint c_pk primary key (id)
, constraint fk_cb foreign key (b_id) references b
, constraint fk_cd foreign key (d_id) references d
);
insert into c values (1, 11, 1, 41);
insert into c values (2, 11, 1, 40);
insert into c values (3, 11, 1, 43);
insert into c values (4, 11, 1, 42);
insert into c values (5, 12, 1, 55);
insert into c values (6, 12, 1, 38);
insert into c values (7, 12, 1, 65);
insert into c values (8, 13, 2, 43);
insert into c values (9, 13, 2, 42);
insert into c values (10, 13, 2, 41);
insert into c values (11, 14, 3, 16);
insert into c values (12, 14, 3, 18);
insert into c values (13, 15, 3, 15);
insert into c values (14, 15, 3, 19);

Table D
Is a simple look up table similar in nature to A.
create table d
( ID number not null
, NAME char(2)
, constraint d_pk primary key (id)
);
insert into d values (1, 'D1');
insert into d values (2, 'D2');
insert into d values (3, 'D3');

5



The Join
The objective is to pick one row from C (having the 
earliest DATEX) for each name of D that corresponds to a 
name of A.  

Try 1

A first attempt gets close enough to see what is wanted.
 select A.NAME A_NAME
      , C.*
      , D.NAME D_NAME
   from
        A,B,C,D
   where
        A.NAME = 'A1'
    and B.A_ID = A.ID
    and C.B_ID = B.ID
    and C.D_ID = D.ID
  order by D.ID, C.DATEX

The bold rows are the ones that meet the objective.
A_   ID  B_ID  D_ID DATEX D_
-- ---- ----- ----- ----- --
A1    2    11     1    40 D1
A1    1    11     1    41 D1
A1    4    11     1    42 D1
A1    3    11     1    43 D1

A1   10    13     2    41 D2
A1    9    13     2    42 D2
A1    8    13     2    43 D2

A1   13    15     3    15 D3
A1   11    14     3    16 D3
A1   12    14     3    18 D3
A1   14    15     3    19 D3

What query would select only the yellow rows?

6



Try 2

A SAS software Proc SQL style query with auto-remerge 
(having C.DATEX = MIN(C.DATEX)) is tried.  The query is 
not accepted by the Oracle parser and thus not acceptable 
for pass-through.
 select A.NAME A_NAME
      , C.*
      , D.NAME D_NAME
  from
        A,B,C,D
  where
        A.NAME = 'A1'
    and B.A_ID = A.ID
    and C.B_ID = B.ID
    and C.D_ID = D.ID
  group by
        D.ID
  having 
        C.DATEX = MIN(C.DATEX) ;

Oracle error message.

       C.DATEX = min(C.DATEX)
       *
ERROR at line 14:
ORA-00979: not a GROUP BY expression

7



Try 3

Update the Try 1 query with a new column based on the 
Oracle RANK function.  DATEX values within each 
combination of a.name and d.name are ranked.

SELECT a.name a_name, c.*, d.name d_name
     , RANK () OVER
         ( PARTITION BY a.name, d.name
           ORDER BY datex
         ) AS rank
  FROM a, b, c, d
 WHERE a.name = 'A1'
   AND b.a_id = a.id
   AND c.b_id = b.id
   AND c.d_id = d.id;

The rows with the lowest DATEX (within group A_NAME, 
D_NAME) can now be easily identified by RANK=1.
A_ ID B_ID D_ID DATEX D_ RANK
-- -- ---- ---- ----- -- ----
A1  2   11    1    40 D1    1
A1  1   11    1    41 D1    2
A1  4   11    1    42 D1    3
A1  3   11    1    43 D1    4
A1 10   13    2    41 D2    1
A1  9   13    2    42 D2    2
A1  8   13    2    43 D2    3
A1 13   15    3    15 D3    1
A1 11   14    3    16 D3    2
A1 12   14    3    18 D3    3
A1 14   15    3    19 D3    4

8



Final query

The Try 3 query is used as a sub-query, and only the 
pertinent rows are selected.

SELECT * 
FROM ( SELECT a.name a_name, c.*, d.name d_name
     , RANK () OVER
         ( PARTITION BY a.name, d.name
           ORDER BY datex
         ) AS rank
       FROM a, b, c, d
       WHERE b.a_id = a.id
         AND c.b_id = b.id
         AND c.d_id = d.id)
WHERE rank=1;

RANK is one of many Analytic Functions introduced into 
Oracle at release 8.1.6.  

You can learn more about them at 
http://www.akadia.com/services/ora_analytic_functions.html 
and
http://www.orafaq.com/node/55

SAS software can access remote DBMS tables using a 
SAS/ACCESS LIBNAME engine.  Some automatic optimization 
is performed by the ACCESS engine, however, not all 
capabilities of the remote system are necessarily utilized. 
The author does not know if the ORACLE engine utilizes 
analytics functions in its optimizations.

9

http://www.akadia.com/services/ora_analytic_functions.html
http://www.orafaq.com/node/55


Real World
The join demonstrated in this paper was used as a sub-
query within a much, much larger Oracle pass-through 
query in a production application.  Pass-through was used 
due to a significant amount of legacy code and the large 
number of rows and tables being processed.
Names have been changed to protect both the innocent 
and guilty.

Conclusion
Proc SQL offers the SAS software user the ability to submit 
a query to a remote systems using SQL dialects and 
features specific to that system.  The ORACLE RDBMS has 
many features that can be taken advantage of when old 
programmers learn new tricks.

10



About the Author
Richard A. DeVenezia has previously presented papers at 
SUGI, SESUG and NESUG, and is an active contributor on 
SAS-L.  He is an independent consultant with fifteen years 
of SAS experience.  He has worked with an extensive mix 
of SAS products in a variety of industries, including 
manufacturing, retail and pharmaceutical companies.

This paper and others can be found at the author's 
website.  Visit http://www.devenezia.com and follow the 
link to Papers.

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

This document was produced using OpenOffice.org Writer.

11

http://www.devenezia.com/

	Introduction
	Simple SAS Example

	Robust Example
	Proc SQL
	Table A
	Table B
	Table C
	Table D
	The Join
	Try 1
	Try 2
	Try 3
	Final query

	Real World
	Conclusion
	About the Author

